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LElTER TO THE EDITOR 

A regular model for bond percolation: the approach towards 
the threshold 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 
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Abstract. A two-dimensional regular model is constructed for bond percolation via a rule 
of bond deletions on  the square lattice. The model describes the approach towards the 
threshold. The critical bond concentration pc  and the correlation length exponent v are 
found. The fractal geometry of the infinite percolating network and the scaling property 
of the cluster size distribution are studied above the threshold. The infinite percolating 
network is shown to be reconstructed by the Mandelbrot-Koch curve proposed as the 
non-random model for the infinite cluster at criticality. 

Recently, there has been increasing interest in exact mathematical fractals (Mandelbrot 
1982, Vicsek 1983, Given and Mandelbrot 1983, Ben-Avraham and Havlin 1983). The 
main reason is that the solution of many important equations of physics on these 
lattices adds to our understanding of the geometric and topological properties that are 
relevant to modelling the corresponding physical processes. The percolating infioite 
cluster is one of the most intensively studied random fractals (Deutscher et al 1983, 
Stauffer 1979, 1985, Stanley and Coniglio 1983, Kirkpatrick 1979, Kapitulnik and 
Deutscher 1984). Various geometrical models have been proposed to imitate the infinite 
incipient cluster at the percolation threshold, and it is of great interest to understand 
the effects of these different geometries on the transport properties at the percolation 
threshold. Three extreme models for the backbone of the infinite cluster have been 
proposed, i.e. the family of Sierpinski gaskets, the ‘links and nodes’ model and the 
‘links-nodes-blobs’ model (Coniglio 1982, Aharony et a1 1984). Mandelbrot (1984a, b) 
and Mandelbrot and Given (1984) have also presented fractal models for percolation 
clusters at criticality. The Mandelbrot models possess the geometric and topological 
properties very close to the infinite cluster at the percolation threshold but do not 
describe the approach towards the threshold pc .  

In general, every lattice bond has three choices in the bond percolation: it can be 
empty, with probability 1 - p ;  it can be part of the infinite network of occupied bonds, 
with probability pPm ( Pm: the percolation probability); or it can be part of one of the 
many finite clusters, with probability p (  1 - Pm). Since each s cluster contains exactly 
s bonds, the probability of any lattice bond belonging to an s cluster is P, = sn, (n, is 
the number of s clusters divided by the total number of lattice bonds). The sum of 
all these probabilities equals unity. As the concentration p approaches the threshold 
pc ,  the pair connectedness length 5 diverges, 5 - ( p  - p c ) - ” .  The percolation probability 
P,, the cluster size distribution n, and the typical cluster size sg show the following 
scaling behaviours (Stauffer 1979, 1985): 

Pm(p) - ( p - ~ c ) ’  n , ( p )  - s-lf(s/s*) sg - ( p  - p p ‘ .  
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In order to have an insight into the scaling behaviours on percolation we build up a 
regular model reflecting the above characteristic features of the process. In addition, 
a regular model has the advantage that we can obtain explicit expressions for the 
quantities of interest. To mimic the geometric texture of the percolating network just 
above the percolation threshold, it is necessary that a regular model is self-similar 
(fractal) on smaller length scales than the connectedness length but becomes 
homogeneous on large length scales. A regular model was proposed to be possessed 
of this property but was a poor approximation for the correlation length exponent. 
The band structures of the vibration problem were studied by the regular model but 
the structure of finite clusters was not examined (Nagatani 1985). 

Now we try to imitate bond percolation with the help of a regular construction. 
The regular model is constructed by the following bond deletions. Bonds on the square 
lattice are recursively deleted via two rules. First, we apply the first rule of the bond 
deletion. Three construction stages of our regular model are shown in figure 1. The 
crosses, triangles and empty squares represent, respectively, bonds deleted at the first 
stage, the second stage and the third stage. Figure 2 represents a part of bonds deleted 
at the Nth stage according to the first rule. The bonds, indicated by crosses in figure 
2, are deleted at the Nth stage from bonds connecting at the sites (i, j) which satisfy 
the relations: 

c o s ( 2 ~ i / 3 ~  +41r/3) =cos(21rj /3~ +41r/3) = 1, 

~ 0 ~ ( 2 . r r i / 3 ~ + 2 . r r / 3 ) = ~ 0 ~ ( 2 . r r j / 3 ~ + 2 . r r / 3 )  = 1, 

c o s ( 2 ~ i / 3 ~  +27~/3)  =cos(21rj /3~ +4.rr/3) = 1 

cos(21ri /3~ +41r/3) = ~ o s ( 2 . r r j / 3 ~  +21r/3) = 1. 

Figure 1. Three construction stages of the regular model. Crosses, triangles and open 
squares denote, respectively, the bonds deleted at the first, second and third stages according 
to the first rule of bond deletion. The full squares represent the bonds deleted by the second 
rule of bond deletion at the third stage. 
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Figure 2. Bond deletions at the Nth stage. The bonds indicated by crosses are deleted 
from bonds connecting at the sites ( i , j )  (represented by full circles) satisfying (1 ) .  

The system obtained at the N stages appears to be a superlattice made by nodes 
separated by a distance of ,.$ = 3N, connected by quasi-linear links. Within this model, 
the correlation between two sites at distance r < ,.$ is via a single link, but this link is 
a branching curve. The curve is identified as the Mandelbrot-Koch curve (Mandelbrot 
and Given 1984). We obtain the square lattice with self-similar structures on smaller 
length scales than the connectedness length 6 = 3 N .  The concentration c1( N) of bonds, 
deleted at the Nth  stage via the first rule of bond deletion, is given by 

c1( N) = 4/gN ( N 3 2 )  (2) 

where c1( 1) = $. We obtain the percolating network (infinite cluster) by use of the first 
rule of bond deletion. Secondly, we apply the second rule of bond deretion to the 
resultant lattice. The second rule is applied to the islands separated from the percolating 
network. This rule works at stages larger than N = 2 .  The full squares in figure 1 
represent bonds deleted at the third stage. Figure 3 shows the construction of finite 
clusters from a island separated from the percolating network at the fourth stage 
( N  = 4). Finite clusters in figure 4 are generated by use of the second rule of bond 
deletion. The finite clusters are found to be a fractal with the initiator of a square and 
the generator of the Mandelbrot-Koch curve. The second rule is summarised as follows: 
bonds into the islands separated from the percolating network are recursively deleted 
as the finite clusters shown in figure 4 generate. The concentration c 2 ( n )  of bonds, 
deleted at the Nth  stage via the second rule of bond deletion, is given by 

C Z ( N ) = ~ + ~ C ~ ( N - ~ )  ( N a 4 )  (3) 

where c2(3) = 4. 
The concentration p ( N )  of bonds after N stages is given by 
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Figure 3. The construction of finite clusters from a island separated from the percolating 
network at the fourth stage (N = 4). An island is shown on the left-hand side. Bonds into 
the island indicated by the full triangles are deleted by the second rule. The finite clusters 
on the right-hand side generate. 

Figure 4. The finite clusters generated by the bond deletions. Finite clusters shown in 
figures 2 ( a ) ,  ( b )  and ( c )  represent, respectively, those generated at the second, third and 
fourth stages. A large cluster is the fractal with the initiator of square and the generator 
of the Mandelbrot-Koch cuwe. 

When N is infinitely large, the concentration p approaches the critical value pc:  

p c =  lim p ( N )  = 1 -$-%( f (4)') -&( f (a).> 
N-m n = O  n = O  

= f (  =0.6). 

From ( 5 )  we obtain 
S p (  G p (  N )  - p c )  - (d)" - p 1 - b -  2/log 3)  
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The connectedness length diverges as 

5 -  (P - P J ”  and ~=0.5/(1-log2/10g3)( =1.3547.. .). (7) 

The value for the correlation length exponent agrees with that derived in a completely 
different fashion by Klein et al (1978) and was then thought to be perhaps exact. The 
most important feature of the regular model described above (figure 1) is that it is 
possible to get explicit expressions for the quantities characterising the approach 
towards the percolation threshold. The regular model is self-similar (fractal) on smaller 
length scales than the connectedness length, but becomes a homogeneous square lattice 
on large length scales. Our model is possessed of characteristic properties that the 
infinite cluster is composed of a backbone through which electrical current flows and 
dangling bonds hanging on it and the backbone consists of multiply connected ‘blobs’ 
joined by singly connected ‘links’. The self-similar structure of the regular model is 
constructed by hierarchical extrapolation. The generator of the fractal is given by the 
Mandelbrot-Koch curve (Mandelbrot and Given 1984). The fractal dimension D of 
the infinite cluster and the fractal dimension Db of its backbone are respectively given 
by D = log 8/log 3 and Db =log 6/log 3. The exponent, describing the power law 
dependence on scale length L of the conductivity L-”“, is given by 

t /  v = log R/log b = log(y)/log 3 ( = 0.9207 . . .) (8) 

where we define R by assuming that for large n the two-point resistance of an order-n 
lattice of unit resistors is 0: R”. By assuming the Einstein relation the spectral dimension 
d, is given by d,  = log 64/log 22 ( = 1.3454 . . .) (Alexander and Orbach 1982, Alexander 
1983). 

The other important feature of the regular model described above (figure 1) is that 
it is possible to get explicit expressions for the quantities characterising the statistics 
of clusters defined in percolation. In order to obtain the cluster size distribution, one 
should note that the largest clusters generated in the kth stage of the process of bond 
deletions contains s( k) - ( 8 ) k  bonds. Fors < (3D)N the cluster size distribution consists 
of a sum of delta functions: 

m N - k  

n,= ( $ ) k  ($)” 8 ( ~ - ( 3 ” ) ~ ) 6 ( 1 - ~ / ( 3 ” ) ~ ) .  (9) 
k = l  ( “ = o  ) 

By spreading the delta functions over the interval we obtain 

n,- (b)k(l/3”)k6(1 - ~ / ( 3 ” ) ~ ) .  (10) 

n, - S-‘e(i - s/s*)  (11) 

Taking into account that s - (3D)k, one can arrive at the scaling form 

with T = 1 +log 9/log 8 = 1 + d / D  where sf - (3D)N - (5)” - ( p  - P = ) - ” ~ ,  so l/a = vD 
is obtained. The scaling law p /  v = d - D is then satisfied. The threshold pc obtained 
in ( 5 )  is somewhat higher than the exact value of 0.5. However, better agreement can 
be achieved by deleting further bonds of the lattice shown in figure 5 .  Bond deletions 
at lower stages (when N is small) do not change the scaling properties. The improved 
model obtained by the further bond deletions is shown in figure 5 .  The full 
triangles represent bonds deleted. The concentration of the bonds deleted is given by 

scaling properties obtained above remain unchanged. 
-1 - -n. 1 We obtain the improved value pc = 3 ( = 0.5012 . . .) for the threshold. The 
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Figure 5. The improved model obtained by further bond deletions than shown in figure 1 
in order to get better agreement of the threshold with the exact value. The full triangles 
indicate bonds further to those deleted in the model shown in figure 1.  

Table 1 lists the geometric and physical properties, determined analytically by our 
regular model. In table 1, the second line shows estimated scaling exponents for the 
two-dimensional (random) percolation to compare more completely our results with 
those of random percolation. Conductivity and backbone exponents have only been 
numerically determined. 

Table 1. List of the physical and geometric properties determined analytically by our 
regular model, compared with other sources: "Stauffer (1979, 1985); 'Kapitulnik and 
Deutscher (1984); 'Hermann and Stanley (1984); dHermann et a1 (1984); 'Lobb and 
Frank (1984). 

P C  U 7 U D D b  t l  zJ 

(0.5012) (1.354) (2.056) (0.3899) (1.892) (1.630) (0.9207) 

0.5" 1.33" 2.05" 0.39" 1.90' 1.62' 0.97"' 

In summary, two-dimensional percolation can be imitated by the regular model. 
The regular construction of percolation, to simulate the scaling properties in the 
two-dimensional bond percolation, is shown to be possessed of characteristic properties 
of the infinite and finite clusters. Our critical exponents are very close to the exact 
ones. Due to the regular construction of percolation it is expected that the transport 
properties near the threshold are powerfully studied by the regular model. 

I would like to thank the referee for his very helpful advice. 
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